'Loop' domain deletional mutant of Bcl-xL is as effective as p29Bcl-xL in inhibiting radiation-induced cytosolic accumulation of cytochrome c (cyt c), caspase-3 activity, and apoptosis

Int J Radiat Oncol Biol Phys. 1999 Jan 15;43(2):423-30. doi: 10.1016/s0360-3016(98)00385-x.

Abstract

Purpose/objective: To investigate the effect of the enforced expression of p29Bcl-xL or its loop deletional mutant, p18Bcl-xLdelta, on irradiation-induced apoptosis and cell-cycle distribution of HL-60 cells.

Materials & methods: We compared the irradiation-induced molecular cascade of apoptosis in control human AML HL-60/neo versus Bcl-xL overexpressing (approximately 8-fold) (HL-60/Bcl-xL) and HL-60/Bcl-XLdelta cells that express the loop domain deletional mutant construct (delta26-83 AA) of Bcl-xL. The three cell lines were irradiated with 6MV photons to varying doses up to 20 Gy. Following this, cytosolic cyt c levels, caspase-3 activity, and the Bcl-2 family of proteins were evaluated utilizing Western blot analysis (whole cell lysate or cytosolic S-100 fraction). Apoptosis was assessed by internucleosomal DNA fragmentation, Annexin-V staining and FACS analysis, as well as by morphologic criteria. The cell-cycle effects of radiation were analyzed by flow cytometry.

Results: Eight hours following irradiation (12 Gy) of HL-60/neo cells, a marked increase (approximately 8-fold) in the cytosolic accumulation of cyt c in the S-100 fraction was observed. This was associated with the cleavage of caspase-3, as well as the generation of its poly (ADP-ribose) polymerase (PARP) and DFF (DNA fragmentation factor)-45 cleavage activity. Twenty-four to forty-eight hours after irradiation, internucleosomal DNA fragmentation and positive Annexin-V staining (32.3+/-3.3%) was detected in HL-60/neo cells. In contrast, in both HL-60/Bcl-xL and HL-60/Bcl-xLdelta cells, a significantly lower percentage of apoptotic cells (p<0.05) were detected and internucleosomal DNA fragmentation was not induced. Following irradiation, Western analysis neither demonstrated any significant alteration in Bcl-2, p29Bcl-xL, p18Bcl-xLdelta, or Bax; nor induced CD95 (Fas receptor) or Fas ligand expression in any cell type. However, in all cell types, irradiation produced approximately a 2-fold increase in the percentage of cells in the G2/M phase of the cell cycle.

Conclusion: These results demonstrate that an intact loop domain is not necessary for the full antiapoptotic function of Bcl-xL against irradiation-induced cytosolic accumulation of cyt c, caspase activation, and apoptosis of HL-60 cells. Additionally, the cell-cycle effects of ionizing radiation in HL-60 cells are not affected by enforced expression of Bcl-xL or Bcl-xLdelta.

MeSH terms

  • Apoptosis / physiology*
  • Caspase 3
  • Caspases / metabolism*
  • Cytochrome c Group / metabolism*
  • Cytosol / enzymology*
  • G2 Phase
  • HL-60 Cells / radiation effects
  • Helix-Loop-Helix Motifs
  • Humans
  • Mitosis
  • Proto-Oncogene Proteins / metabolism*
  • Proto-Oncogene Proteins c-bcl-2 / genetics
  • Proto-Oncogene Proteins c-bcl-2 / physiology*
  • bcl-2-Associated X Protein
  • bcl-X Protein

Substances

  • BAX protein, human
  • BCL2L1 protein, human
  • Cytochrome c Group
  • Proto-Oncogene Proteins
  • Proto-Oncogene Proteins c-bcl-2
  • bcl-2-Associated X Protein
  • bcl-X Protein
  • CASP3 protein, human
  • Caspase 3
  • Caspases