Antigen-induced airway hyperresponsiveness, pulmonary eosinophilia, and chemokine expression in B cell-deficient mice

Am J Respir Cell Mol Biol. 1999 Mar;20(3):379-87. doi: 10.1165/ajrcmb.20.3.3291.

Abstract

Murine models of allergen-induced pulmonary inflammation share many features with human asthma, including the development of antigen-induced pulmonary eosinophilia, airway hyperresponsiveness, antigen-specific cellular and antibody responses, the elaboration of Th2 cytokines (interleukin [IL]-4 and IL-5), and the expression of chemokines with activity for eosinophils. We examined the role of B cells and antigen-specific antibody responses in such a model by studying the histopathologic and physiologic responses of B cell-deficient mice compared with wild-type controls, following systemic immunization and airway challenge with ovalbumin (OVA). Both OVA-challenged wild-type and B cell-deficient mice developed (1) airway hyperresponsiveness, (2) pulmonary inflammation with activated T cells and eosinophils, (3) IL-4 and IL-5 secretion into the airway lumen, and (4) increased expression of the eosinophil active chemokines eotaxin and monocyte chemotactic protein-3. There were no significant differences in either the pathologic or physiologic responses in the B cell-deficient mice compared with wild-type mice. These data indicate that B cells and antigen-specific antibodies are not required for the development of airway hyperresponsiveness, eosinophilic pulmonary inflammation, and chemokine expression in sensitized mice following aerosol challenge with antigen.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antibody Specificity
  • Asthma / immunology
  • B-Lymphocytes / immunology*
  • Bronchoalveolar Lavage Fluid / cytology
  • Bronchoalveolar Lavage Fluid / immunology
  • Chemokines / analysis*
  • Chemokines / genetics
  • Immunoglobulin E / immunology
  • Lung / pathology
  • Mice
  • Mice, Mutant Strains
  • Ovalbumin / immunology
  • Pulmonary Eosinophilia / immunology*
  • RNA, Messenger / analysis
  • Respiratory Hypersensitivity / immunology*

Substances

  • Chemokines
  • RNA, Messenger
  • Immunoglobulin E
  • Ovalbumin