Congenital generalized lipoatrophy (CGL) is a syndrome with multiple clinical manifestations and complete atrophy of adipose tissue. The exact mechanism of this disease remains unknown. One hypothesis presupposes an abnormal development of adipocytes. Leptin, the adipocyte-specific product of the ob gene, acts as a regulatory factor of body weight. In children, as in adults, leptin levels are correlated with body mass index (BMI) and body fat mass. Some authors have demonstrated that adults with congenital or acquired generalized lipoatrophy have decreased leptin concentrations. In order to study serum leptin profile during childhood in this disease, we measured serum leptin concentrations in six children aged 5.5-11 years suffering from CGL, and investigated the relationship between metabolic parameters and the variations in leptin levels. Serum leptin concentrations (1.19+/-0.32 ng/ml (+/- S.D.)) were extremely low compared with those observed in normal children. No significant correlation was found with BMI, which is known to be one of the major determinants of serum leptin. Serum leptin values were significantly correlated with fasting insulin levels (r=0.83, P=0.024). In conclusion, extremely low leptin values measured in children with CGL could be regarded as one among other diagnostic parameters. However, the detectable levels observed in all of these children support the evidence that a small amount of body fat is likely to be present in these patients, despite complete subcutaneous lipoatrophy. Our data suggest that this small amount of adipose tissue could be metabolically active and, at least in part, sensitive to insulin. Further investigations are required to uncover the pathophysiological mechanisms of this syndrome, known to be commonly associated with insulin resistance.