The transfer of high molecular weight (HMW) DNA into mammalian cells is an important strategy for assessing human gene expression and chromosome structure and function. However, using current methods, it is difficult to dependably prepare intact HMW DNA because of the susceptibility of the DNA to degradation and physical shearing. Here we describe a strategy whereby intact artificial chromosome DNA (as large as 1 Mb) can be routinely prepared from yeast. Strict adherence to this protocol has resulted in: (i) >90% of liquid DNA preparations containing largely intact DNA; (ii) transfection efficiencies for the development of stable human clonal cell lines ranging from 5 x 10(-7) to 8.8 x 10(-5); and (iii) the presence of markers from both YAC arms in 30-42% of the human fibrosarcoma cell HT1080 clones and 100% of the CF lung epithelial cell lines IB3-1 and CFT1 clones, suggesting that the HMW DNA is potentially intact in a substantial proportion of clones. Using this protocol for DNA preparation, successful transfection of functional 1 Mb human artificial chromosome DNA into human cells has also been achieved. This methodology should prove useful to those interested in using HMW human DNA for gene expression and functional analysis or for linear artificial chromosome construction, since integrity is absolutely critical for the success of these studies.