Nuclear hormone receptors have been shown to repress transcription in the absence of ligand. This repression is mediated by a corepressor complex that contains the Sin3A protein and histone deacetylases (HDAC1 and 2). Studies by several groups demonstrate that this complex is recruited to nuclear receptors through the highly related corepressors SMRT (silencing mediator of retinoid acid and thyroid hormone receptor) and N-CoR (nuclear receptor corepressor). We describe here the cloning, characterization, and chromosomal mapping of forms of human and mouse SMRT that includes a 1,000-aa extension, which reveals striking homology to the amino terminus of N-CoR. Structure and function studies of wild-type and natural splicing variants suggest the presence of 3-4 amino terminal domains that repress in a cooperative as well as mechanistically distinct fashion.