NIH3T3 fibroblast cells transfected with the full-length coding regions of the mt1 and MT2 human melatonin receptors stably expressed the receptor, coupled to a pertussis-toxin-sensitive G protein and exhibiting high affinity for melatonin. Both mt1 and MT2 melatonin receptors mediated the incorporation of [35S]GTPgammaS into isolated membranes via receptor-catalyzed exchange of [35S]GTPgammaS for GDP. The relative intrinsic activity and potency of the compounds were subsequently studied by using [35S]GTPgammaS incorporation. The order of potency was equal to the order of apparent affinity. Melatonin and full agonists increased [35S]GTPgammaS binding. Luzindole did not increase basal [35S]GTPgammaS binding but competitively inhibited melatonin-stimulated [35S]GTPgammaS binding, thus exhibiting antagonist action. Two other mt1 antagonists, 4P-PDOT and N-[(2-phenyl-1H-indol-3-yl)ethyl]cyclobutanecarboxamide, behaved as partial agonists at the MT2 subtype, with relative intrinsic activities of 0.37 and 0.39, respectively. For the first time, these findings show important differences in analogue intrinsic activity between the human mt1 and MT2 melatonin receptor subtypes.