Calcitonin gene-related peptide can attenuate or augment pancreatic damage in caerulein-induced pancreatitis in rats

J Physiol Pharmacol. 1999 Mar;50(1):49-62.

Abstract

We have recently shown that treatment with calcitonin gene-related peptide (CGRP) before and during induction of acute pancreatitis exhibits a protective effect against pancreatic damage evoked by overdose of caerulein. Studies in the stomach have shown that administration of CGRP exhibits dual action on gastric mucosa, CGRP administration before induction of gastric lesions, protects gastric mucosa against damage, whereas treatment with this peptide after development of gastric ulcer exacerbates mucosal injury. These observations prompt us to determine the influence of CGRP administrated before and after induction of pancreatitis on development and evolution of pancreatic tissue damage.

Methods: Acute pancreatitis was induced by s.c. infusion of caerulein (10 microg/kg/h) for 5 h. CGRP was administrated (10 microg/kg s.c. per dose) 30 min prior to caerulein infusion and 3 h later during caerulein infusion or at the time 1 h, 4 h and 7 h after the end of caerulein infusion. Rats were sacrificed at the time 0 h, 3 h or 9 h after cessation of caerulein administration. The pancreatic blood flow (PBF), plasma activity of amylase, plasma interleukin-1beta concentration, cell proliferation, biochemical and morphological signs of pancreatitis were examined.

Results: Caerulein-induced pancreatitis (CIP) led to 42% decrease in DNA synthesis, 30% inhibition of PBF, as well as, a significant increase in pancreatic weight, plasma amylase activity, plasma interleukin-1beta concentration, and development of the histological signs of pancreatic damage (edema, leukocyte infiltration and vacuolization). Treatment with CGRP prior and during induction of CIP attenuated the pancreatic damage what was manifested by partial reversion of the drop in DNA synthesis (40.9+1.7 v. 34.2+2.0 dpm/microg DNA) and PBF (83+3% v. 70+3%). Increases in pancreatic weight and plasma interleukin-1beta were reduced. Morphology showed improvement of pancreatic integrity. Administration of CGRP after induction of CIP aggravated pancreatic damage what was manifested by additional decrease in PBF and DNA synthesis. Also pancreatic weight as well as histological signs of pancreatic damage were increased.

Conclusions: (1) Administration of CGRP before and during induction of pancreatitis protects pancreas against pancreatic damage. (2) Treatment with CGRP after development of CIP aggravates pancreatic damage.

MeSH terms

  • Animals
  • Calcitonin Gene-Related Peptide / pharmacology*
  • Ceruletide / pharmacology*
  • Drug Synergism
  • Male
  • Pancreas / drug effects*
  • Pancreas / pathology
  • Pancreatitis / chemically induced*
  • Pancreatitis / metabolism
  • Pancreatitis / pathology*
  • Rats
  • Rats, Wistar

Substances

  • Ceruletide
  • Calcitonin Gene-Related Peptide