Quantitative in vivo measurement of gyrification in the human brain: changes associated with aging

Cereb Cortex. 1999 Mar;9(2):151-60. doi: 10.1093/cercor/9.2.151.

Abstract

Clinical observation suggests that the aging process affects gyrification, with the brain appearing more 'atrophic' with increasing age. Empirical studies of tissue type indicate that gray matter volume decreases with age while cerebrospinal fluid increases. Quantitative changes in cortical surface characteristics such as sulcal and gyral shape have not been measured, however, due to difficulties in developing a method that separates abutting gyral crowns and opens up the sulci -- the 'problem of buried cortex'. We describe a quantitative method for measuring brain surface characteristics that is reliable and valid. This method is used to define the gyral and sulcal characteristics of atrophic and non-atrophic brains and to examine changes that occur with aging in a sample of 148 normal individuals from a broad age range. The shape of gyri and sulci change significantly over time, with the gyri becoming more sharply and steeply curved, while the sulci become more flattened and less curved. Cortical thickness also decreases over time. Cortical thinning progresses more rapidly in males than in females. The progression of these changes appears to be relatively stable during midlife and to begin to progress some time during the fourth decade. Measurements of sulcal and gyral shape may be useful in studying the mechanisms of both neurodevelopmental and neurodegenerative changes that occur during brain maturation and aging.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Aging / pathology*
  • Atrophy / pathology
  • Brain / pathology*
  • Case-Control Studies
  • Female
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging
  • Male
  • Middle Aged
  • Reference Values
  • Reproducibility of Results