Potentiation of Ca2+ signaling in endothelial cells by 11,12-epoxyeicosatrienoic acid

J Cardiovasc Pharmacol. 1999 May;33(5):779-84. doi: 10.1097/00005344-199905000-00015.

Abstract

Incubation of endothelium with an increased epoxyeicosatrienoic acid (EET) concentration specifically augments the endothelium-dependent relaxation ascribed to endothelium-derived hyperpolarizing factor in porcine coronary arteries (Weintraub et al., Circ Res 1997;81:258-267). Experiments were designed to test whether such sustained increased levels of EETs in the environment of endothelial cells alters Ca2+ signaling. Changes in cytosolic Ca2+ were monitored in cultured porcine aortic endothelial cells (PAECs) and in the human endothelial EA.hy926 cell line after incubation (or not) with 5 microM 11,12-epoxyeicosatrienoic acid (EET). Although the mobilization of intracellular Ca2+ induced by 2 microM thapsigargin was not affected significantly, EET treatment augmented the capacitative Ca2+ entry evoked by the Ca(2+)-ATPase) inhibitor in both cell types. Similar observations were obtained by using histamine as a stimulant in EA.hy926 cells. As assessed in PAECs, 2 micrograms/ml triacsin C, a known inhibitor of the incorporation of EETs into phospholipids, did not significantly affect the potentiating action of EETs on Ca2+ signaling in response to thapsigargin. However, in solvent-control cells, triacsin C significantly reduced both the mobilization of Ca2+ from intracellular stores and the capacitative Ca2+ entry provoked by thapsigargin. Thus the EET-potentiating effect overcomes the inhibitory action of triacsin C on Ca2+ signaling in endothelial cells. Taken together, these results demonstrate that sustained increases in EETs may amplify Ca2+ signaling. However, contrary to the EET-induced augmentation of endothelium-dependent relaxation in the porcine coronary artery, resistance of this novel action of EETs to triacsin C suggests that the mechanism involved does not depend on incorporation into phospholipids.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 8,11,14-Eicosatrienoic Acid / analogs & derivatives*
  • 8,11,14-Eicosatrienoic Acid / metabolism
  • 8,11,14-Eicosatrienoic Acid / pharmacology
  • Animals
  • Aorta / cytology
  • Aorta / metabolism
  • Calcium / metabolism
  • Calcium Signaling / drug effects
  • Calcium Signaling / physiology*
  • Cells, Cultured
  • Endothelium, Vascular / cytology
  • Endothelium, Vascular / drug effects
  • Endothelium, Vascular / metabolism*
  • Enzyme Inhibitors / pharmacology
  • Humans
  • Swine
  • Triazenes / pharmacology

Substances

  • Enzyme Inhibitors
  • Triazenes
  • 11,12-epoxy-5,8,14-eicosatrienoic acid
  • triacsin C
  • 8,11,14-Eicosatrienoic Acid
  • Calcium