The solution structure of the 96-residue C-terminal fragment of the merozoite surface protein 1 (MSP-1) from Plasmodium falciparum has been determined using nuclear magnetic resonance (NMR) spectroscopic measurements on uniformly13C/15N-labelled protein, efficiently expressed in the methylotrophic yeast Komagataella (Pichia) pastoris. The structure has two domains with epidermal growth factor (EGF)-like folds with a novel domain interface for the EGF domain pair interactions, formed from a cluster of hydrophobic residues. This gives the protein a U-shaped overall structure with the N-terminal proteolytic processing site close to the C-terminal glycosyl phosphatidyl inositol (GPI) membrane anchor site, which is consistent with the involvement of a membrane-bound proteinase in the processing of MSP-1 during erythrocyte invasion. This structure, which is the first protozoan EGF example to be determined, contrasts with the elongated structures seen for EGF-module pairs having shared Ca2+-ligation sites at their interface, as found, for example, in fibrillin-1. Recognition surfaces for antibodies that inhibit processing and invasion, and antibodies that block the binding of these inhibitory antibodies, have been mapped on the three-dimensional structure by considering specific MSP-1 mutants.
Copyright 1999 Academic Press.