Enzyme-catalyzed polymer transformation with electrochemical ac impedance detection has been employed for the measurement of urea and creatinine in serum samples. A polymer, based on poly(methylvinyl ether)/maleic anhydride modified by esterification with n-octanol, which is stable at pH 7.4 and which is transformed rapidly in response to alkaline pH changes, was linked to enzymatic reactions between urease and urea or creatinine deiminase and creatinine to produce a disposable sensor system. The polymer was screen-printed onto interdigitated screen-printed carbon electrodes and the electrodes overlaid with absorbent pads containing the relevant enzyme. Application of serum samples, "spiked" with either urea or creatinine, resulted in rapid polymer transformation, and resultant changes in the capacitance of the polymer-coated electrodes were analyte-concentration dependent. Additional information on the mechanisms of polymer transformation was obtained from dynamic quartz crystal microbalance measurements.