Propagation of human influenza viruses in embryonated chicken eggs (CE) results in the selection of variants with amino acid substitutions near the receptor-binding site of the hemagglutinin (HA) molecule. To evaluate the mechanisms by which these substitutions enable human virus growth in CE, we studied the binding of 10 human influenza A (H1N1, H3N2) and B strains, isolated and propagated solely in MDCK cells, and of their egg-adapted counterparts to preparations of cellular membranes, gangliosides, sialylglycoproteins, and sialyloligosaccharides. All egg-adapted variants differed from nonadapted strains by increased binding to the plasma membranes of chorio-allantoic (CAM) cells of CE and by the ability to bind to CAM gangliosides. In addition, there was no decrease in affinity for inhibitors within allantoic fluid. These findings indicate that growth of human influenza viruses in CE is restricted because of their inefficient binding to receptors on CAM cells and that gangliosides can play an important role in virus binding and/or penetration. The effects of the egg-adaptation substitutions on the receptor-binding properties of the viruses include (i) enhancement of virus binding to the terminal Sia(alpha2-3)Gal determinant (substitutions in HA positions 190, 225 of H1N1 strains and in position 186 of H3N2 strains); (ii) a decrease of steric interference with more distant parts of the Sia(alpha2-3Gal)-containing receptors (a loss of glycosylation sites in positions 163 of H1 HA and 187 of type B HA); and (iii) enhanced ionic interactions with the negatively charged molecules due to charged substitutions at the tip of the HA [187, 189, 190 (H1), and 145, 156 (H3)]. Concomitantly with enhanced binding to Sia(alpha2-3)Gal-terminated receptors, all egg-adapted variants decreased their affinity for equine macroglobulin, a glycoprotein bearing terminal 6'-sialyl(N-acetyllactosamine)-moieties.
Copyright 1999 Academic Press.