The remarkable technologic and methodologic advances spurred on by the Human Genome Project are being applied throughout the life sciences. In the field of toxicology, high-resolution assays now make it possible to discover virtually all the differences in gene expression brought on by exposure to a particular xenobiotic. There are 2 principal approaches used to build a catalog of changes in gene expression: hybridization microarrays and gel-based methods, such as differential display and AFLP-based mRNA finger-printing. The power of such approaches is exemplified by the identification of more than 300 genes that differ in expression level by at least 2-fold in response to the nongenotoxic rodent liver carcinogen phenobarbital.