In vivo analysis of the domains of yeast Rvs167p suggests Rvs167p function is mediated through multiple protein interactions

Genetics. 1999 Jul;152(3):881-93. doi: 10.1093/genetics/152.3.881.

Abstract

Morphological changes during cell division in the yeast Saccharomyces cerevisiae are controlled by cell-cycle regulators. The Pcl-Pho85p kinase complex has been implicated in the regulation of the actin cytoskeleton at least in part through Rvs167p. Rvs167p consists of three domains called BAR, GPA, and SH3. Using a two-hybrid assay, we demonstrated that each region of Rvs167p participates in protein-protein interactions: the BAR domain bound the BAR domain of another Rvs167p protein and that of Rvs161p, the GPA region bound Pcl2p, and the SH3 domain bound Abp1p. We identified Rvs167p as a Las17p/Bee1p-interacting protein in a two-hybrid screen and showed that Las17p/Bee1p bound the SH3 domain of Rvs167p. We tested the extent to which the Rvs167p protein domains rescued phenotypes associated with deletion of RVS167: salt sensitivity, random budding, and endocytosis and sporulation defects. The BAR domain was sufficient for full or partial rescue of all rvs167 mutant phenotypes tested but not required for the sporulation defect for which the SH3 domain was also sufficient. Overexpression of Rvs167p inhibits cell growth. The BAR domain was essential for this inhibition and the SH3 domain had only a minor effect. Rvs167p may link the cell cycle regulator Pcl-Pho85p kinase and the actin cytoskeleton. We propose that Rvs167p is activated by phosphorylation in its GPA region by the Pcl-Pho85p kinase. Upon activation, Rvs167p enters a multiprotein complex, making critical contacts in its BAR domain and redundant or minor contacts with its SH3 domain.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cytoskeletal Proteins*
  • DNA-Binding Proteins / metabolism
  • Fungal Proteins / chemistry*
  • Fungal Proteins / metabolism
  • Fungal Proteins / physiology
  • Microfilament Proteins
  • Models, Biological
  • Phosphorylation
  • Protein Conformation
  • Saccharomyces cerevisiae / chemistry*
  • Saccharomyces cerevisiae Proteins*
  • Schizosaccharomyces pombe Proteins*
  • Temperature
  • Transcription Factors*
  • Wiskott-Aldrich Syndrome Protein
  • src Homology Domains

Substances

  • ABF1 protein, S cerevisiae
  • Cytoskeletal Proteins
  • DNA-Binding Proteins
  • Fungal Proteins
  • LAS17 protein, S cerevisiae
  • Microfilament Proteins
  • RVS167 protein, S cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Schizosaccharomyces pombe Proteins
  • Transcription Factors
  • Wiskott-Aldrich Syndrome Protein
  • cbp1 protein, S pombe