Mouse model of a familial hypertrophic cardiomyopathy mutation in alpha-tropomyosin manifests cardiac dysfunction

Circ Res. 1999 Jul 9;85(1):47-56. doi: 10.1161/01.res.85.1.47.

Abstract

To investigate the functional consequences of a tropomyosin (TM) mutation associated with familial hypertrophic cardiomyopathy (FHC), we generated transgenic mice that express mutant alpha-TM in the adult heart. The missense mutation, which results in the substitution of asparagine for aspartic acid at amino acid position 175, occurs in a troponin T binding region of TM. S1 nuclease mapping and Western blot analyses demonstrate that increased expression of the alpha-TM 175 transgene in different lines causes a concomitant decrease in levels of endogenous alpha-TM mRNA and protein expression. In vivo physiological analyses show a severe impairment of both contractility and relaxation in hearts of the FHC mice, with a significant change in left ventricular fractional shortening. Myofilaments that contain alpha-TM 175 demonstrate an increased activation of the thin filament through enhanced Ca2+ sensitivity of steady-state force. Histological analyses show patchy areas of mild ventricular myocyte disorganization and hypertrophy, with occasional thrombi formation in the left atria. Thus, the FHC alpha-TM transgenic mouse can serve as a model system for the examination of pathological and physiological alterations imparted through aberrant TM isoforms.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Calcium / physiology
  • Cardiomyopathy, Hypertrophic / genetics*
  • Cardiomyopathy, Hypertrophic / pathology
  • Cardiomyopathy, Hypertrophic / physiopathology*
  • Heart / physiopathology*
  • Homeostasis / physiology
  • Mice
  • Mice, Transgenic / genetics
  • Mutation / physiology*
  • Myocardial Contraction / physiology
  • Myocardium / pathology
  • Tropomyosin / genetics*

Substances

  • Tropomyosin
  • Calcium