Spinal muscular atrophy

J Inherit Metab Dis. 1999 Jun;22(4):545-54. doi: 10.1023/a:1005516625866.

Abstract

Spinal muscular atrophy is a common cause of disability in childhood and is characterized by weakness and wasting of voluntary muscle. It is frequently fatal. The gene for this disorder has been identified as the SMN gene and is part of a highly complex duplicated region of chromosome 5 that is subject to a high rate of gene deletion and gene conversion. The severity of muscle weakness correlates with the amount of full-length SMN protein produced. Molecular genetic studies support a model in which patients are compound heterozygotes of deleted and converted alleles that predicts a progressively decreasing amount of protein product with severity of muscle weakness. The function of SMN is beginning to be understood and it appears to be involved in ribonucleoprotein biogenesis and thus indirectly in post-transcriptional processing of mRNA. There are theoretical grounds for motor neurons having a cell-specific vulnerability to disturbances of mRNA processing and transport and these are briefly reviewed.

Publication types

  • Review

MeSH terms

  • Animals
  • Child
  • Cyclic AMP Response Element-Binding Protein
  • Humans
  • Motor Neuron Disease / genetics
  • Muscular Atrophy, Spinal / genetics*
  • Muscular Atrophy, Spinal / physiopathology
  • Nerve Tissue Proteins / genetics*
  • Nerve Tissue Proteins / physiology
  • RNA / metabolism
  • RNA-Binding Proteins
  • SMN Complex Proteins

Substances

  • Cyclic AMP Response Element-Binding Protein
  • Nerve Tissue Proteins
  • RNA-Binding Proteins
  • SMN Complex Proteins
  • RNA