Low density lipoprotein (LDL) modification: basic concepts and relationship to atherosclerosis

Blood Purif. 1999;17(2-3):66-78. doi: 10.1159/000014378.

Abstract

A large number of clinical studies support the hypothesis that the risk for atherosclerosis is associated with the proportion of different LDL subfractions in blood. Electronegatively modified forms of LDL (LDL(-)) isolated using different chromatographic techniques are characterised by significant differences in the protein and lipid content as compared to the native LDL subfraction. LDL(-) composition appears to influence its atherogenic properties as well as its high susceptibility to oxidation and impaired metabolism. Increased LDL(-) levels are found in subjects with coronary artery disease, particularly in diabetics and patients undergoing haemodialysis (HD). Whether elevated LDL(-) levels are due to the LDL oxidation in blood remains disputed despite the oxidative character of LDL(-) modification. Plausible means for LDL(-) formation in blood include glycation and protein-radical interactions with ApoB 100. The latter can prevail during HD as observed in in vitro studies using a model HD system. The rapid and progressive formation of LDL(-) during standard HD can be significantly reduced employing haemolipodialysis (HLD), which provides local delivery of specific antioxidants (vitamin E and C) to blood at concentrations above normal physiologic levels. This procedure appears to be more effective than oral supplementation with antioxidants and may be a promising approach to reducing the rapid progression of atherosclerosis in HD patients.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Arteriosclerosis* / etiology
  • Arteriosclerosis* / metabolism
  • Humans
  • Lipid Peroxidation
  • Lipoproteins, LDL* / chemistry
  • Lipoproteins, LDL* / metabolism
  • Oxidation-Reduction

Substances

  • Lipoproteins, LDL
  • oxidized low density lipoprotein