T cell-mediated inflammation is considered to play a key role in the pathogenic mechanisms sustaining multiple sclerosis (MS). Caspase-1, formerly designated IL-1beta-converting enzyme, is crucially involved in immune-mediated inflammation because of its pivotal role in regulating the cellular export of IL-1beta and IL-18. We studied the role of caspase-1 in experimental autoimmune encephalomyelitis (EAE), the animal model for MS. Caspase-1 is transcriptionally induced during EAE, and its levels correlate with the clinical course and transcription rate of proinflammatory cytokines such as TNF-alpha, IL-1beta, IFN-gamma, and IL-6. A reduction of EAE incidence and severity is observed in caspase-1-deficient mice, depending on the immunogenicity and on the amount of the encephalitogenic myelin oligodendrocyte glycoprotein (MOG) peptide used. In caspase-1-deficient mice, reduced EAE incidence correlates with defective development of anti-MOG IFN-gamma-producing Th1 cells. Finally, pharmacological blockade of caspase-1 in Biozzi AB/H mice, immunized with spinal cord homogenate or MOG35-55 peptide, by the caspase-1-inhibitor Z-Val-Ala-dl -Asp-fluoromethylketone, significantly reduces EAE incidence in a preventive but not in a therapeutic protocol. These results indicate that caspase-1 plays an important role in the early stage of the immune-mediated inflammatory process leading to EAE, thus representing a possible therapeutic target in the acute phase of relapsing remitting MS.