Cardiolipin is a specific mitochondrial phospholipid that is present in mammalian tissues in low concentration. To measure cardiolipin in small biopsies from patients with mitochondrial disease, we developed a new technique that can detect subnanomolar levels of well-resolved molecular species, the most abundant of which are tetralinoleoyl-cardiolipin (L(4)) and trilinoleoyl-oleoyl-cardiolipin (L(3)O). To this end, a fluorescence-labeled derivative of cardiolipin (2-[naphthyl-1'-acetyl]-cardiolipin dimethyl ester) was formed and analyzed by high performance liquid chromatography. Cardiolipin was measured in skeletal muscle biopsies from 8 patients with mitochondrial disease and in 17 control subjects. In 5 patients with mitochondrial disease, cardiolipin content was higher than normal (2. 4;-7.0 vs. 0.4;-2.2 nmol/mg protein). In 3 patients with mitochondrial disease, the L(4)/L(3)O ratio was lower than normal (2;-4 vs. 4;-6). Cardiolipin was also measured in various rat and dog muscle tissues. The L(4)/L(3)O ratio was higher in condensed "muscle" type mitochondria (heart ventricle, skeletal muscle, ratios 4;-7) than in orthodox "liver" type mitochondria (liver, smooth muscle, heart auricular appendage, H9c2 myoblasts, ratios 0.4;-3), suggesting that the L(4)/L(3)O proportion is important for cristae membrane structure. We concluded that the L(4)/L(3)O ratio is a tissue-specific variable that may change in the presence of mitochondrial disease. The new method is suitable to measure cardiolipin in muscle biopsies in order to estimate concentration of mitochondria.