Protein kinase C (PKC), a key component of the signaling pathways leading to proliferation and differentiation, consists of a family closely related serine/threonine protein kinases. The mRNA expression of these PKC isoforms has been characterized during hematopoietic differentiation. Using the reverse-transcriptase polymerase chain reaction technique, we have analyzed the levels of isoform transcripts in bone marrow CD34(+) hematopoietic progenitors and their progeny differentiated along erythroid, megakaryocyte, or granulocyte/monocyte lineages, upon exposure to growth factors. In contrast with isoforms alpha, beta(I), beta(II), delta, and epsilon, ubiquitously expressed, isoforms theta, eta/L, zeta, and iota/lambda exhibited a lineage-restricted expression. These qualitative changes, which allow to distinguish the erythroid and megakaryocyte phenotypes from the granulocyte/monocyte phenotype, include zeta exclusively upregulated in granulocytes/monocytes and theta, eta/L, and iota/lambda exclusively expressed in megakaryocytes and erythroblasts. In contrast, erythroblasts and megakaryocytes, which supposedly share a common bipotential progenitor, displayed only quantitative changes. These results evidence the selective expression of PKC isoforms at transcriptional and/or posttranscriptional levels in hematopoietic progenitors induced to differentiate, which may suggest a differential contribution of individual isoforms to cellular signaling.
Copyright 1999 Academic Press.