Mitochondrial porin, or voltage-dependent anion channel, is a pore-forming protein first discovered in the outer mitochondrial membrane. Later investigations have provided indications for its presence also in other cellular membranes, including the plasma membrane, and in caveolae. This extra-mitochondrial localization is debated and no clear-cut conclusion has been reached up to now. In this work, we used biochemical and electrophysiological techniques to detect and characterize porin within isolated caveolae and caveolae-like domains (low density Triton-insoluble fractions). A new procedure was used to isolate porin from plasma membrane. The outer surface of cultured CEM cells was biotinylated by an impermeable reagent. Low density Triton-insoluble fractions were prepared from the labeled cells and used as starting material to purify a biotinylated protein with the same electrophoretic mobility and immunoreactivity of mitochondrial porin. In planar bilayers, the porin from these sources formed slightly anion-selective pores with properties indistinguishable from those of mitochondrial porin. This work thus provides a strong indication of the presence of porin in the plasma membrane, and specifically in caveolae and caveolae-like domains.