VAMP-1 has a highly variable C-terminus generated by alternative splicing

Biochem Biophys Res Commun. 1999 Nov 2;264(3):777-80. doi: 10.1006/bbrc.1999.1588.

Abstract

VAMP-1 (synaptobrevin1) is one of the key proteins in the SNARE complex which is involved in regulated exocytosis. Recently, Isenmann et al. (1998, Mol. Biol. Cell 9, 1649-1660) showed the extreme C-terminal region of VAMP-1A and 1B to be involved in subcellular targeting of the isoforms. Four new splice variants (VAMP-1C to F) were identified in addition to the previously published variants VAMP-1A and VAMP-1B. Interestingly, the four new isoforms also have variable sequences only at the extreme C-terminus. This suggests that the C-terminal region has an important function for VAMP-1 and vesicle targeting. All six variants were a result of alternative splicing that linked exons 1-4 which encode the conserved region of VAMP-1 with one of the exons 5A to 5F that encodes the highly variable extreme C-terminus. Exon (5A-E) encode C-termini of two to five amino acid residues, whereas exon 5F encoded a long C-terminal amino acid extension. The splice variants were differentially expressed in human brain, kidney, and inflammatory cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alternative Splicing*
  • Amino Acid Sequence
  • Base Sequence
  • Humans
  • Membrane Proteins / chemistry*
  • Membrane Proteins / genetics*
  • Molecular Sequence Data
  • Organ Specificity
  • R-SNARE Proteins

Substances

  • Membrane Proteins
  • R-SNARE Proteins