Recent work has demonstrated that plants have endogenous defence mechanisms that can be induced as a response to attack by insects and pathogens. There are two well-studied examples of these induced defence responses. Systemic acquired resistance (SAR) results in increased resistance to a broad spectrum of pathogens throughout a plant in response to localized necrosis caused by pathogen infection. The second example is the systemic induction of proteinase inhibitors to deter feeding by herbivores following an initial event of feeding. In addition, there is now preliminary evidence for other induced defence response pathways. By understanding the breadth of induced defence responses and the mechanisms used to control these pathways, novel plant protection strategies may be developed for use in agronomic settings. Rather than reducing crop losses caused by pests or pathogens by using chemicals that are designed to kill the offending organism, the plant's own defence mechanisms can be used to limit damage due to pests. Novel crop protection strategies based on genetic or chemical regulation of these induced responses show great potential. The first example of a crop protection product that acts by inducing an endogenous defence response pathway is now on the market. Bion reduces the level of pathogen infection in plants by activating SAR.