Parasitic nematodes infect billions of people world-wide, often causing chronic infections associated with high morbidity. The greatest interface between the parasite and its host is the cuticle surface, the outer layer of which in many species is covered by a carbohydrate-rich glycocalyx or cuticle surface coat. In addition many nematodes excrete or secrete antigenic glycoconjugates (ES antigens) which can either help to form the glycocalyx or dissipate more extensively into the nematode's environment. The glycocalyx and ES antigens represent the main immunogenic challenge to the host and could therefore be crucial in determining if successful parasitism is established. This review focuses on a few selected model systems where detailed structural data on glycoconjugates have been obtained over the last few years and where this structural information is starting to provide insight into possible molecular functions.