The environmental contaminants trimethyltin (TMT) and triethyltin (TET) stimulated the spontaneous release of [(3)H]noradrenaline ([(3)H]NA) from hippocampal slices in a time- and concentration-dependent manner. TMT was the most potent compound, exhibiting an EC50 value 10-fold lower (3.8 microM) than that of TET (39.5 microM). Metal-evoked [(3)H]NA release did not increase in the absence of desipramine and was completely blocked by reserpine preincubation, indicating a vesicular origin of [(3)H]NA release but not a mechanism involving reversal of the transmitter transporter. The voltage-gated Na(+) channel blocker tetrodotoxin (TTX) did not affect metal-evoked [(3)H]NA release. [(3)H]NA release elicited by TMT was partially extracellular Ca(2+)-dependent, since it was significantly decreased in a Ca(2+)-free EGTA-containing medium, whereas TET induced an extracellular Ca(2+)-independent release of [(3)H]NA. Neither inhibitors of Ca(2+)-entry through Na(+)/Ca(2+)exchanger and voltage-gated calcium channels, nor agents that interfere with Ca(2+)-mobilization from intracellular stores affected [(3)H]NA release induced by TMT. TET-evoked [(3)H]NA release was reduced by ruthenium red, which depletes mitochondrial Ca(2+)stores, but was not modified by caffeine and thapsigargin, which interfere with Ca(2+)mobilization from endoplasmic reticulum. The fact that TET effect was also attenuated by DIDS, an inhibitor of anion exchange, indicates that the effect of TET on spontaneous [(3)H]NA release may be mediated by intracellular mobilization of Ca(2+) from mitochondrial stores through a Cl(-) dependent mechanism.
Copyright 2000 Academic Press.