We have previously shown that the immunosuppressant cyclosporine A (CsA) increases the activity, the protein level, and the steady-state levels of the mRNA of the endothelial nitric-oxide synthase (eNOS) gene in bovine aortic endothelial cells (BAEC). We have now investigated the mechanisms responsible for these effects. Preincubation with an inhibitor of RNA polymerase II abolished CsA-induced eNOS up-regulation. Nuclear run-on experiments demonstrated a 1.6-fold increase in the induction of eNOS gene by CsA. In agreement with these results, transient transfections showed that CsA augmented the transactivation of the eNOS promoter. Electrophoretic mobility shift assays showed an increase in the activator protein-1 (AP-1) DNA binding activity in BAEC treated with CsA. An increase in the level of c-fos mRNA and in the nuclear content of c-Fos protein was detected in BAEC treated with CsA. Site-directed mutagenesis of the AP-1 cis-regulatory element in the context of the human eNOS promoter resulted in the abrogation of the induction mediated by CsA. Hence, up-regulation of eNOS mRNA by CsA is a transcriptional phenomenon involving the proximal AP-1 site in the 5'-regulatory region of the human eNOS gene. Furthermore, our data exemplify how immunosuppressive drugs may result in the regulation of specific genes involved in the homeostasis of endothelial function, such as eNOS.