The objective of the present study was to investigate the ultrastructural consequences of vitrification of bovine oocytes at the metaphase II (MII) stage by the so-called "Open Pulled Straw" method. Oocytes were matured in vitro for 22 hr and cryopreserved by vitrification. After warming and additional 2 hr of culture, the oocytes were inseminated in vitro. Oocytes were fixed for transmission electron microscopy immediately after warming, at 4 hr after warming (i.e., 2 hr post insemination [hpi]), at 26 hr after warming (i.e., 24 hpi), and at 74 hr after warming (i.e., 72 hpi). Control oocytes (i.e., nonvitrified oocytes) were processed at 22 hr after in vitro maturation and at 2, 22, and 72 hpi. Compared to the controls, the vitrified oocytes fixed immediately after warming presented an additional category of small membrane-bound vesicles and lacked the typical compartment of solitary cortical granules aligned along the oolemma. Instead, they presented clusters of cortical granules that displayed varying degrees of degeneration. In vitrified oocytes fixed at 2 hpi, the small vesicles were less abundant, and more advanced degeneration of the cortical granule clusters was noted. In vitrified oocytes fixed at 24 hpi, the small vesicles were practically absent, and polyspermic penetration was observed as were vacuoles containing degraded cortical granule content. In vitrified oocytes fixed at 72 hpi, lack of cleavage as well as vacuolization and degeneration of blastomeres were noted. Moreover, the nucleolar ultrastructure signaled aberrant activation of the ribosomal RNA genes. In conclusion, vitrification of bovine oocytes at the MII stage resulted in cell biological alterations in the oocyte after warming that apparently were reflected in the subsequent fertilization and embryonic development.
Copyright 2000 Wiley-Liss, Inc.