Angiotensinogen, the renin (E.C. 3.4.23.15) substrate, belongs to the serpins superfamily and has been classified as a noninhibitory serpin. Using mass spectroscopy, angiotensinogen purified from Chinese hamster ovary cell supernatant shows a broad spectrum. The absence of protease inhibitors throughout the purification leads to an angiotensinogen cleaved within the reactive center loop. This cleavage does not affect the Ang I generation because kinetic parameters are similar to the values of the full-length angiotensinogen. Although cleavage is complete, the cleaved angiotensinogen migrates after deglycosylation on SDS-polyacrylamide gel electrophoresis as a doublet differing by 4 kDa. To test whether the circulating angiotensinogen is cleaved in the reactive center loop, it was purified from a pool of human plasma and was shown to be uncleaved. Its migration was obviously slower than of cleaved angiotensinogen but also consisted of two bands pointing to a so far unexplained residual heterogeneity. We then compared the heat-induced polymerization of full-length- and reactive center loop-cleaved angiotensinogens. Both monomers were able to aggregate, revealing a particular behavior of angiotensinogen distinct from that of reactive center loop-cleaved serpins. Lacking the three-dimensional structure of angiotensinogen, we propose and discuss a structural model of the serpin fold within the renin substrate.