The pro-apoptotic activity of the Bcl-2 family member Bax has been shown to be facilitated by homodimerization. However, it is unknown whether Bcl-2 or Bcl-x(L) have to homodimerize to protect cells from apoptosis. Here we show by co-immunoprecipitation and FPLC analyses that while Bax multimerizes and forms heterodimers with Bcl-2, there is no evidence for Bcl-2 homodimerization, even in conditions under which Bcl-2 protects cells from apoptosis. Immunofluorescence studies confirmed that Bax can attract active, soluble Bcl-2 to mitochondrial membranes, but that nuclear/ER membrane-bound Bcl-2 was incapable of dislocating soluble Bcl-2. The failure of Bcl-2 to homodimerize is due to structural constraints as versions of Bcl-2 deleted or mutated in the BH1 and BH2 domains effectively dimerized with wild-type Bcl-2 and were dislocated by Bcl-2 inside cells. These data indicate that naturally occurring Bcl-2 does not expose protein domains that mediate homodimerization and therefore most likely acts as a monomer to protect cells from apoptosis.