Ag presented by activated APCs promote immunogenic responses whereas Ag presented by resting APCs leads to tolerance. In such a model, the regulation of cytokine release by the presence or absence of costimulation might potentially play a critical role in dictating the ultimate outcome of Ag recognition. C-C chemokines are a structurally defined family of chemoattractants that have diverse effects on inflammation. We were interested in determining the activation requirements for chemokine production by CD4+ T cells. Our data demonstrate for T cell clones and previously activated T cells from TCR-transgenic mice that stimulation with anti-TCR alone results in the production of copious amounts of macrophage-inflammatory protein-1alpha (MIP-1alpha) and other C-C chemokines, and that addition of anti-CD28 gives very little augmentation. Furthermore, MIP-1alpha production is nearly equivalent from both anergic and nonanergic cells. For naive T cells, anti-CD3 stimulation alone led to as much MIP-1alpha production as Ag + APC stimulation. The addition of costimulation gave a 3-10-fold enhancement, but this was 70-fold less than the effect of costimulation on IL-2 production. Thus, although C-C chemokines play a broad role in influencing inflammation, their production by signal 1 alone makes them unlikely to play a critical role in the decision between a tolerogenic and an immunogenic response. Furthermore, the production of MIP-1alpha by anergic T cells, as well as following signal 1 alone, raises the possibility that in vivo this chemokine serves to recruit activated T cells to become tolerant.