HopE is one of the smallest members of a family of 31 outer membrane proteins in Helicobacter pylori and has been shown to function as a porin. In this study it was cloned into Escherichia coli where it was expressed in the outer membrane, as confirmed by indirect immunofluorescence using HopE-specific antibodies. HopE purified from E. coli reconstituted channels in planar bilayer membranes that were the same size as those formed by HopE purified from H. pylori. A model of the membrane topology of HopE was constructed and indicated that this protein formed a beta-barrel with 16 transmembrane amphipathic beta-strands. The accuracy of this model was tested by linker insertion mutagenesis, assuming that, like other porins, amino acid insertions were not tolerated in the transmembrane beta-strands but were tolerated in the adjoining loop regions. Generally, the results obtained with a series of 12 insertions of the sequence RSKDV and two substitutions were consistent with the topological model. The preponderance of amino acids that were conserved in the extended family of HopE paralogs were predicted to be within the membrane and comprised 45% of all residues in the membrane.