The distal region of a short arm of chromosome 1p is frequently deleted in many human cancers including neuroblastoma (NBL), in which it has been narrowed down to the smallest region of overlap between D1S244 and D1S214 (approximately 7 cM). During the search for the candidate tumor suppressor genes mapped within the region, we found the KIAA0591 gene which encoded a new human kinesin-related protein with a homology to human axonal transporter of synaptic vesicles (ATSV). The kinesin is an intracellular motor protein and often associated with neuronal differentiation and survival. Here we identified a complete open reading frame of the KIAA0591 gene by screening a cDNA library derived from human substantia nigra. The KIAA0591 protein contains a possible pleckstrin homology (PH) domain at its carboxy-terminus. However, it did not possess a force-generating motor domain which is well conserved among kinesin superfamily members (KIFs). Northern blot analysis demonstrated that KIAA0591 mRNA was preferentially expressed in both adult and fetal brains, kidney, skeletal muscle and pancreas. KIAA0591 was expressed in favorable NBLs at higher levels than in unfavorable NBLs, although RT-PCR SSCP analysis showed no mutation within the coding region of the KIAA0591 gene, when 8 neuroblastoma tissues and 15 neuroblastoma-derived cell lines were examined. Thus, the full-length KIAA0591 gene may be a novel member of human KIF superfamily which lacks motor domain and might function as a tumor suppressor in an epigenetic but not a classic Knudson's manner.