Background: The role of Immunoglobulin (Ig)E in inflammation is the subject of considerable study and a number of studies have shown conflicting evidence for its role in eosinophil recruitment and bronchial hyperresponsiveness in a number of murine models. The low affinity IgE receptor, CD23, is known to act as a negative regulator of IgE production and we have used knockout mice deficient in CD23 to investigate the role of IgE in eosinophil recruitment and bronchial hyperresponsiveness in a murine model of airway inflammation.
Objective: To study the role of the low affinity FcepsilonII receptor, CD23 in IgE production, lung inflammation and bronchial hyperresponsiveness.
Methods: Wild-type and CD23 knockout C57Bl/6 mice (CD23-/-) were immunized by intraperitoneal injection with ovalbumin on days 0 and 14 and challenged with aerosolized antigen on day 21 for a period of up to 1 week. Blood samples, bronchoalveolar lavage and lung tissue samples were obtained to determine serum IgE levels and inflammatory cell numbers, respectively. Furthermore, airway resistance was measured to increasing concentrations of aerosolized 5-hydroxytryptamine in order to evaluate the effect of CD23 deficiency on bronchial hyperresponsiveness to antigen challenge.
Results: Sensitization of wild-type C57Bl/6 mice to ovalbumin resulted in elevated levels of total serum IgE and ovalbumin-specific IgE, which was significantly augmented in CD23 knockout C57Bl/6 mice (CD23-/-). A significant increase in the percentage of eosinophils recovered in bronchoalveolar lavage fluid from wild-type and CD23-/- mice was observed 24 h following 3 or 7 days aerosol exposure with ovalbumin (10 mg/mL). At 3 days, the increase in the percentage of eosinophils was significantly greater in CD23-/- groups. Immunohistochemical analysis of lungs sections revealed the presence of CD3+, CD4+ and CD23+ cells in wild-type mice but a lack of immunofluorescence of CD23+ cells in CD23-/- mice. In wild-type ovalbumin-immunized mice, bronchial hyperresponsiveness to aerosolized 5-hydroxytryptamine was observed following a 3-day antigen challenge, which was significantly greater in CD23-/- ovalbumin-immunized mice.
Conclusion: These studies demonstrate that CD23-/- mice have increased capacity to produce IgE consistent with the view of a negative feedback role for membrane-bound CD23 and under such conditions, may account for the greater numbers of eosinophils recruited to the airways and bronchial hyperresponsiveness observed following acute but not chronic antigen challenge.