Long-term administration of D-NAME induces hemodynamic and structural changes in the cardiovascular system

Physiol Res. 2000;49(1):47-54.

Abstract

N(G)-nitro-D-arginine-methyl ester (D-NAME) is considered to be an inactive enantiomer of L-NAME and is generally used as the negative control for NO synthase inhibition with L-NAME. With the aim to compare the effects of 4-week L-NAME and D-NAME treatments on hemodynamic and cardiovascular structural parameters, four groups of male Wistar rats were investigated: the controls and groups administered 40 and 20 mg/kg/day of L-NAME and 40 mg/kg/day of D-NAME. At the end of the experiment, myocardial NO synthase activity decreased by 42, 24 and 25%; aortic NO synthase activity decreased by 35, 15 and 13% vs. controls in the L-NAME 40, L-NAME 20 and D-NAME 40 groups, respectively. The DNA concentrations in the myocardium and the aorta increased significantly after L-NAME and D-NAME treatments. The inhibition of NO synthase was accompanied by a significant elevation in systolic blood pressure in all three groups. The LVW/BW ratio increased by 27, 14 and 13% vs. controls in the L-NAME 40, L-NAME 20 and D-NAME 40 groups, respectively. The aortic wall mass, measured as the cross-sectional area, increased by 45, 17 and 25% vs. controls in the L-NAME 40, L-NAME 20 and D-NAME 40 groups, respectively. Myocardial fibrosis represented 0.94% in the controls, but 7.96, 4.70 and 5.25% in L-NAME 40, L-NAME 20 and D-NAME 40 groups, respectively. It is concluded that D-NAME, although less affective than L-NAME, inhibits NO synthase activity resulting in hemodynamic and structural changes in the cardiovascular system similar to the changes induced by half the dose of L-NAME. Thus, the consideration of D-NAME as an inactive enantiomer and its use as the negative control needs to be reevaluated.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aorta / enzymology
  • Cardiovascular System / anatomy & histology
  • Cardiovascular System / drug effects*
  • DNA / analysis
  • Enzyme Inhibitors / pharmacology
  • Heart Ventricles / enzymology
  • Hemodynamics / drug effects*
  • Male
  • NG-Nitroarginine Methyl Ester / administration & dosage
  • NG-Nitroarginine Methyl Ester / pharmacology*
  • Nitric Oxide Synthase / antagonists & inhibitors
  • Nitric Oxide Synthase / metabolism
  • Rats
  • Rats, Wistar
  • Stereoisomerism

Substances

  • Enzyme Inhibitors
  • DNA
  • Nitric Oxide Synthase
  • NG-Nitroarginine Methyl Ester