The ultrastructure of notochordal cells and the quantitative changes of nuclear mRNA-containing particles were studied in several stages of the development of the chick embryo. The modifications in the frequency of perichromatin granules (PCG) were analyzed in embryos at 24 hr to 10 days of incubation (stages 6-36 of Hamburger and Hamilton). The ultrastructural and morphometric data show that notochordal cells undergo changes that can be systematized in four periods. Very early notochordal cells (stages 6-11), are characterized by the presence of large nucleoli and abundant PCG, traits probably related to the frequent mitotic division and the expression of inductive signals reported in numerous papers. During the second period (stages 16-21) the number of PCG and the size of the nucleolus decrease. These changes are coincident with the beginning of vacuolization. In the third period (stages 21-30), the notochordal cells undergo a second cytodifferentiation characterized by a large increase of cytoplasmic vacuolization and secretion of materials that thicken the perichordal sheath. During this period, the nucleolus becomes smaller and the number of PCG increases. Similar features were previously described during functional maturation of embryonic neurons and striated fibers at synaptogenesis, and epidermal cells. The fourth period, beginning at stage 30, is characterized by the decrease of the density of PCG and of the nucleolar volume and corresponds to cessation of mitosis and cell degeneration.
Copyright 2000 Wiley-Liss, Inc.