A method for compliance estimation employing magnetic resonance pulse wave velocity measurement is presented. Time-resolved flow waves are recorded at several positions along the vessel using a phase contrast sequence, and pulse wave velocity is calculated from the delay of the wave onsets. Using retrospective cardiac gating in combination with an optically decoupled electrocardiogram acquisition, a high temporal resolution of 3 ms can be achieved. A phantom set-up for the simulation of pulsatile flow in a compliant vessel is described. In the phantom, relative errors of pulse wave velocity estimation were found to be about 15%, whereas in a volunteer, larger errors were found that might be caused by vessel branches. Results of pulse wave velocity estimation agree with direct aortic distension measurements which rely on a peripheral estimate of aortic pressure and are therefore less accurate. Studies in 12 volunteers show values of pulse wave velocity consistent with the literature; in particular the well-known increase in pulse wave velocity with age was observed. Preliminary results show that the method can be applied to aortic aneurysms.