We reported that plant ribosome inactivating proteins (RIP) have a unique DNA glycosylase activity that removes adenine from single-stranded DNA (Nicolas, E., Beggs, J. M., Haltiwanger, B. M., and Taraschi, T. F. (1998) J. Biol. Chem. 273, 17216-17220). In this investigation, we further characterized the interaction of the RIP gelonin with single-stranded oligonucleotides and investigated its activity on double-stranded oligonucleotides. At physiological pH, zinc and beta-mercaptoethanol stimulated the adenine DNA glycosylase activity of gelonin. Under these conditions, gelonin catalytically removed adenine from single-stranded DNA and, albeit to a lesser extent, from normal base pairs and mismatches in duplex DNA. Also unprecedented was the finding that activity on single-stranded and double-stranded oligonucleotides containing multiple adenines generated unstable products with several abasic sites, producing strand breakage and duplex melting, respectively. The results from competition experiments suggested similar interactions between gelonin's DNA-binding domain and oligonucleotides with and without adenine. A re-examination of the classification of gelonin as a DNA glycosylase/AP lyase using the borohydride trapping assay revealed that gelonin was similar to the DNA glycosylase MutY: both enzymes are monofunctional glycosylases, which are trappable to their DNA substrates. The k(cat) for the removal of adenine from single-stranded DNA was close to the values observed with multisubstrate DNA glycosylases, suggesting that the activity of RIPs on DNA may be physiologically relevant.