Two related Plasmodium falciparum genes and their encoded proteins have been identified by comparative analyses with Plasmodium vivax reticulocyte binding protein 2 (PvRBP-2). The P. falciparum genes have a structure which suggests that they may be the result of an evolutionary duplication event, as they share more than 8 kb of closely related nucleotide sequence but then have quite divergent unique 3' ends. Between these shared and unique regions is a complex set of repeats, the nature and number of which differs between the two genes, as well as between different P. falciparum strains. Both genes encode large hydrophilic proteins, which are concentrated at the invasive apical end of the merozoite and are predicted to be more than 350 kDa, with an N-terminal signal sequence and a single transmembrane domain near their C termini. Importantly, they also share gene structure and amino acid homology with the Plasmodium yoelii 235-kDa rhoptry protein family, which is also related to PvRBP-2. Together these Plasmodium proteins define an extended family of proteins that appear to function in erythrocyte selection and invasion. As such, they may prove to be essential components of malaria vaccine preparations.