The third prototype of a continuous flow ventricular assist device (CF3) is being developed and tested for implantation in humans. The blood in the pump flows through a fully shrouded four bladed impeller (supported by magnetic bearings) and through small clearance regions on either side of the impeller. Computational fluid dynamics (CFD) solutions for this flow have been obtained by using TascFlow, a software package available from AEA Technology, UK. These flow solutions have been used to estimate the shear stresses on the blood in the pump and, hence, to minimize hemolysis. In addition, the solutions are informative for achieving a design that will provide good washing of the blood to minimize the possibility of stagnation points that can lead to thrombosis. This study presents numerical studies of these phenomena in the CF3. The calculated shear rate results are compared with values published in the open literature. The comparisons indicate that hemolysis will not be a problem with CF3, which is in agreement with preliminary experimental measurements. Flow studies are being conducted to determine the optimal size of the clearance regions.