The endgame of cytokinesis can follow one of two pathways depending on developmental context: resolution into separate cells or formation of a stable intercellular bridge. Here we show that the four wheel drive (fwd) gene of Drosophila melanogaster is required for intercellular bridge formation during cytokinesis in male meiosis. In fwd mutant males, contractile rings form and constrict in dividing spermatocytes, but cleavage furrows are unstable and daughter cells fuse together, producing multinucleate spermatids. fwd is shown to encode a phosphatidylinositol 4-kinase (PI 4-kinase), a member of a family of proteins that perform the first step in the synthesis of the key regulatory membrane phospholipid PIP2. Wild-type activity of the fwd PI 4-kinase is required for tyrosine phosphorylation in the cleavage furrow and for normal organization of actin filaments in the constricting contractile ring. Our results suggest a critical role for PI 4-kinases and phosphatidylinositol derivatives during the final stages of cytokinesis.