The antiviral activity of L-chicoric acid against HIV-1 has been attributed previously to the inhibition of HIV-1 integration. This conclusion was based on the inhibition of integrase activity in enzymatic assays and the isolation of a resistant HIV strain with a mutation (G140S) in the integrase gene. Here we show that the primary antiviral target of L-CA and its analogs in cell culture is viral entry. L- and D-chicoric acid (L-CA and D-CA) and their respective tetra-acetyl esters inhibit the replication of HIV-1 (III(B) and NL4.3) and HIV-2 (ROD) in MT-4 cells at a 50% effective concentration (EC(50)) ranging from 1.7 to 70.6 microM. In a time-of-addition experiment, L-CA, D-CA, L-CATA, and D-CATA were found to interfere with an early event in the viral replication cycle. Moreover, L-CA, D-CA, and their analogs did not inhibit the replication of virus strains that were resistant toward polyanionic and polycationic compounds at subtoxic concentrations. Furthermore, HIV-1 strains resistant to L-CA and D-CA were selected in the presence of L-CA and D-CA, respectively. Mutations were found in the V2, V3, and V4 loop region of the envelope glycoprotein gp120 of the L-CA and D-CA-resistant NL4.3 strains that were not present in the wild-type NL4.3 strain. Recombination of the gp120 gene of the L-CA and D-CA resistant strain in a NL4.3 wild-type molecular clone fully rescued the phenotypic resistance toward L-CA and D-CA. No significant mutations were detected in the integrase gene of the drug-resistant virus strains. Although inhibition of HIV integrase activity by L-CA and its derivatives was confirmed in an oligonucleotide-driven assay, integrase carrying the G140S mutation was inhibited to the same extent as the wild-type integrase.