The members of the MARCKS protein family, MARCKS (an acronym for myristoylated alanine-rich C kinase substrate) and MARCKS-related protein (MRP), interact with membranes, protein kinase C, and calmodulin via their effector domain, a highly basic segment composed of 24-25 amino acid residues. This domain is also involved in the interaction between MARCKS/MRP and actin. In this article we show that a peptide corresponding to the effector domain of MRP, the effector peptide, strongly influences the dynamics of actin polymerization. Depending on the stoichiometric ratio of effector peptide to actin the peptide either accelerates or retards the actin polymerization process, which takes place in the presence of near-physiological salt concentrations. A model is developed in which this phenomenon is explained by two independent nucleation processes involving free actin monomers and peptide-bound actin monomers, respectively. As a control, a possible regulatory mechanism has been investigated: we show that calmodulin inhibits the actin polymerizing activity of the MRP effector peptide, thereby validating our model approach.