Shock-induced transformation of liquid deuterium into a metallic fluid

Phys Rev Lett. 2000 Jun 12;84(24):5564-7. doi: 10.1103/PhysRevLett.84.5564.

Abstract

Simultaneous measurements of shock velocity and optical reflectance at 1064, 808, and 404 nm of a high pressure shock front propagating through liquid deuterium show a continuous increase in reflectance from below 10% and saturating at approximately (40-60)% in the range of shock velocities from 12 to 20 &mgr;m/ns (pressure range 17-50 GPa). The high optical reflectance is evidence that the shocked deuterium reaches a conducting state characteristic of a metallic fluid. Above 20 &mgr;m/ns shock velocity (50 GPa pressure) reflectance is constant indicating that the transformation is substantially complete.