Epidemiological studies have shown that human immunodeficiency virus type 2 (HIV-2) is markedly less pathogenic than HIV-1 in vivo. Individuals infected with HIV-2 exhibit a remarkably slow rate of disease development, and these clinical properties have been attributed presumptively to an "attenuated" phenotype of HIV-2 itself. Here, we investigated the impact of coreceptor usage on the cytopathicity of HIV-2 and compared its pathogenic potential with that of HIV-1 in a unique human lymphoid histoculture model. We found that HIV-2 strains, as well as closely related simian immunodeficiency viruses (SIV), displayed mildly or highly aggressive cytopathic phenotypes depending on their abilities to use the coreceptor CCR5 or CXCR4, respectively. A side-by-side comparison of primary X4 HIV-1 and HIV-2 strains revealed similar, high degrees of cytopathicity induced by both HIV types. Furthermore, we found that HIV-2 coreceptor specificity for CCR5 and CXCR4 determined the target cell population for T-cell depletion in lymphoid tissue. Finally, utilization of the alternate coreceptors BOB and Bonzo did not significantly increase the cytopathic properties of HIV-2. These findings demonstrate that coreceptor preference is a key regulator of target cell specificity and the cytopathic potential of HIV-2, with indistinguishable rules compared with HIV-1. Moreover, HIV-2 strains are not characterized by an intrinsically lower cytopathicity than HIV-1 strains. Therefore, direct cytopathic potential per se does not explain the unique behavior of HIV-2 in people, highlighting that other unknown factors need to be elucidated as the basis for their lesser virulence in vivo.