Evidence suggests that an important contribution of spectral power in the alpha range is characteristic of human REM sleep. This contribution is, in part, due to the appearance of well-defined bursts of alpha activity not associated with arousals during both tonic and phasic REM fragments. The present study aims at determining if the REM-alpha bursts constitute a different alpha variant from the REM background alpha activity. Since previous findings showed a selective suppression of background alpha activity over occipital regions during phasic REM fragments and, on the other hand, the density of alpha bursts seem to be independent of the presence or absence of rapid eye movements, one expects to find the same spectral power contribution of alpha bursts in tonic and phasic REM fragments. The results indicated that REM-alpha bursts showed a similar power contribution and topographic distribution (maximum energy over occipital regions) both in tonic and phasic REM fragments. This suggests that two variants of alpha activity with different functional roles are present during the human REM sleep: i) background alpha activity, modulated over occipital regions by the presence of rapid eye movements, which may be an electrophysiological correlate of the visual dream contents; and ii) REM-alpha bursts, independent of the presence of rapid eye movements, which could be facilitating the connection between the dreaming brain and the external world, working as a micro-arousal in this brain state.