Heating TEMPO-methyl resin with dialkylsilane styrenes affords larger resin beads via living free radical polymerization. The new silyl resins prepared by this solvent-free suspension polymerization protocol have been coined "Rasta silanes". Rasta silanes have a novel macromolecular architecture typified by long straight chain polymers bearing the silanes which emanate from the phenyl rings of a cross-linked polystyrene core. By careful selection of comonomers during the polymerization step, loading capacity, silane spacing, and the relative distance of the silane moieties from the resin core can be controlled. The consistently high-loading Rasta silane resins produced can be easily converted into either a reactive silyl chloride or triflate to subsequently anchor alcohols and phenols to the solid phase. Cleavage from the resin can be mediated by treatment with HF.pyridine, TFA solutions, or TBAF.