The effect of nicotine 1 nM-10 microM on the efflux of [(3)H]D-aspartate was tested in primary cultures of rat cortical neurons kept at rest and subjected to electrical field stimulation. Two trains of pulses at 20 Hz for 20 s were applied at the 60th (St(1)) and 90th (St(2)) min of perfusion. The drug slightly and transiently increased the efflux of resting cells while, when given during St(2), it greatly enhanced the electrically evoked efflux estimated as St(2)/St(1) ratio, EC(50) being 107 nM. The nicotinic receptors (nAChR) giving rise to this positive modulation were partly mecamylamine- and partly alpha-bungarotoxin-sensitive. They appeared to be located at the nerve endings since nicotine facilitation was only slightly prevented by tetrodotoxin during depolarisation with 15 mM KCl. Pretreatment with glutamate antagonists did not reveal any interaction between nAChR and ionotropic glutamate receptors. Membrane glutamate carrier involvement in the nicotine effect was ruled out. Long-term treatment with nicotine 1 microM (from the 3rd-4th to the 8th-9th day in vitro) reduced the maximal response to the drug but shifted its threshold concentration to the left (from 10 nM to 1 nM), leaving the contribution of the two receptor subtypes unchanged. Reduced responsiveness to nicotine was also evident in long-term treated cerebellar granule cells. In conclusion, presynaptic nAChR's, both containing and lacking alpha(7) subunits, can contribute to enhance the glutamatergic secretion in primary cultures of rat cortical neurons, chiefly during electrical stimulation.