Parathyroid hormone (PTH)-induced inhibition of renal proximal tubular Na/P(i) cotransport involves two consecutive steps: endocytosis followed by lysosomal degradation of the type IIa Na/P(i) cotransporter. Tyrosine-, dileucine-, and diacidic-based motifs are suggested to be involved in endocytosis and/or lysosomal targeting of different plasma membrane proteins. The rat type IIa cotransporter (NaPi2) contains two cytoplasmic tyrosine residues (Y) within sequences highly homologous to tyrosine-based motifs (GY(402)FAM and Y(509)RWF), three cytoplasmic dileucine (LL(101), LL(374), and LI(591)) and two cytoplasmic diacidic motifs (EE(81) and EE(616)). We studied the role of these motifs on the PTH-induced retrieval and lysosomal degradation of the NaPi2 cotransporter. To follow its trafficking in vivo, the NaPi2 protein was fused to the carboxyl-terminal end of the enhanced green fluorescence protein. This fusion did not impair the apical targeting or the PTH-induced endocytosis of the wild-type cotransporter when transfected in opossum kidney cells. Single and multiple Y and LL mutants retained the apical targeting and the PTH-induced degradation. Mutations of the diacidic motifs were also without effect. These data suggest that the above three motifs are not required for the PTH-induced internalization and/or degradation of the cotransporter.