Background: Interleukin-6 (IL-6) is a key molecule in chronic inflammation and has been implicated in the progression of atherosclerosis. Serotonin (5-hydroxytryptamine; 5-HT) causes vascular contraction and proliferation, but its role in atherogenesis has not been clarified. We investigated the effects of 5-HT on IL-6 synthesis in human vascular smooth muscle cells (VSMCs).
Methods and results: IL-6 levels in the culture medium of VSMCs were determined by ELISA. IL-6 mRNA accumulation was determined by use of a Quantikine mRNA colorimetric quantification kit. NF-kappaB activation was tested by gel retardation assay. 5-HT induced IL-6 production by VSMCs in a time- and dose-dependent manner, with increased IL-6 mRNA accumulation and nuclear factor-kappaB activation. The effect of 5-HT on IL-6 production was significantly inhibited by the 5-HT(2) receptor antagonist ketanserin and the selective 5-HT(2A) receptor antagonist sarpogrelate. Conversely, the 5-HT(2) receptor agonist alpha-methyl-5-HT increased IL-6 production. The protein kinase C (PKC) inhibitor calphostin C, but not the protein kinase A inhibitor KT5720, suppressed 5-HT-induced IL-6 production. The effect of 5-HT was also abolished in PKC-depleted VSMCs after pretreatment with phorbol 12-myristate 13-acetate for 24 hours.
Conclusions: 5-HT acts on 5-HT(2A) receptors and increases IL-6 synthesis in human VSMCs at least partially through a PKC-dependent pathway. These results suggested that 5-HT may contribute to inflammatory activation of the vessels during atherogenesis.