Conduction block by clonidine is not mediated by alpha2-adrenergic receptors in rat sciatic nerve fibers

Reg Anesth Pain Med. 2000 Nov-Dec;25(6):620-5. doi: 10.1053/rapm.2000.16160.

Abstract

Background and objectives: Clonidine, an alpha(2)-adrenergic agonist, has been shown to prolong local anesthesia. It appears that clonidine by itself produces conduction block by acting on peripheral nerves. However, whether clonidine-induced conduction block is mediated through alpha(2)-adrenergic receptors remains unclear. The purpose of this study was to see if clonidine's nerve-blocking action was through alpha(2)-adrenergic receptors by examining clonidine's action in the presence of alpha(2)-adrenergic antagonists.

Methods: The compound action potentials (CAPs) evoked by electrical stimuli were recorded from the isolated rat sciatic nerve in a recording chamber. Conduction block was examined by analyzing CAPs with regard to peak amplitude and time-to-peak in the presence of clonidine alone or clonidine plus alpha(2)-adrenergic antagonist yohimbine or idazoxan.

Results: Both clonidine and yohimbine produced concentration-dependent, reversible, conduction block. Based on concentration-response relationships, the 50% of effective concentration (EC(50)) were estimated to be 1.61 +/- 0.51 mmol/L (mean +/- SD) for clonidine and 51.4 +/- 27.2 micromol/L for yohimbine. A mixture of equal volumes of 2.07 mmol/L clonidine and 55.6 micromol/L yohimbine produced conduction block to a level close to the mean value between conduction blocks induced by 2.07 mmol/L clonidine alone and 55.6 micromol/L yohimbine alone. Addition of idazoxan, a more specific alpha(2)-adrenergic antagonist than yohimbine, to clonidine was without effect on clonidine-induced conduction block.

Conclusions: The results indicated that the mixture of clonidine and yohimbine, in which either drug inhibited impulse conduction, produced conduction block in an additive manner, and that clonidine-induced conduction block was not reversed by coapplication with a specific alpha(2)-adrenergic antagonist idazoxan. These data suggest that clonidine's effects likely depend on mechanisms not mediated by alpha(2)-adrenergic receptors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adrenergic alpha-Agonists / pharmacology*
  • Animals
  • Clonidine / pharmacology*
  • Male
  • Neural Conduction / drug effects*
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Adrenergic, alpha-2 / drug effects*
  • Receptors, Adrenergic, alpha-2 / physiology
  • Sciatic Nerve / drug effects*
  • Sciatic Nerve / physiology
  • Yohimbine / pharmacology

Substances

  • Adrenergic alpha-Agonists
  • Receptors, Adrenergic, alpha-2
  • Yohimbine
  • Clonidine